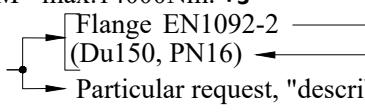
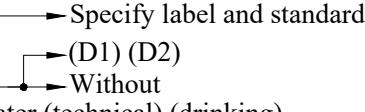
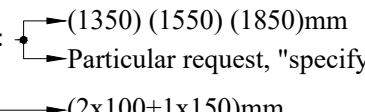
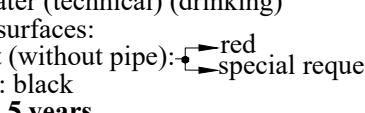
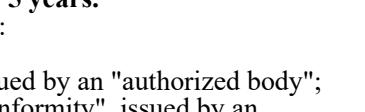
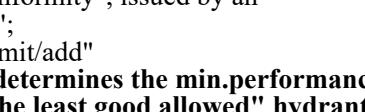
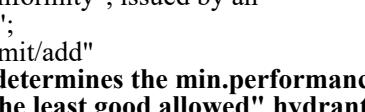
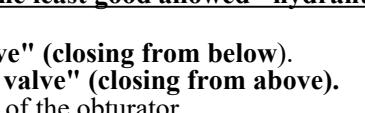


ABOVE-GROUND FIRE HYDRANT type NH3

<Two in one = hydrant + isolating pre-valve>

<Dual reliability = possibility of use (closing from below)
even when the regular closing (from above) is malfunctioning>







<high flow rate ($K_v = 540 \text{ m}^3/\text{h}$) = less fire damage>



PROCUREMENT DATA: *1

- * Name: Above-ground fire hydrant
- * Made in accordance with the standard EN14384, type "A". *2
- * Nominal sizes DN100, PN16. * Closing with the main valve "from above".
- * With isolation "pre-valve", closing "from below". * With control valve.
- * Possibility of use even when the main valve seal is malfunctioning.
- * Activation without additional tools.
- * The possibility of blocking unauthorized use.
- * Flow (for $D_i=2x65$): $K_v=\text{min. } 520 \text{ m}^3/\text{h}$.
- * Activation moment: $M_{OT}=\text{max. } 70 \text{ Nm}$.
- * Repair of the main valve; the other hydrants remain in operation, without digging up the ground and without dismantling the hydrant body.
- * Drainage system "all outside"; repair without dismantling the hydrant.
- * Outlets tilted toward the ground by 25° .
- * Breakage due to force F ; without damage pipeline, automatic stop of water discharge. *3
- * Breaking moment $M=\text{max. } 14000 \text{ Nm}$. *3

- * Inlet connection: (Du150, PN16)
- * Nominal height H_i : (1350) (1550) (1850)mm
- * Outlets D_i : (2x100+1x150)mm

- * Outlet couplings: Specify label and standard
- * Drainage system: Without
- * Medium: Water (technical) (drinking)
- * Colors of external surfaces:
 - aboveground part (without pipe): red
 - underground part: black

* Warranty period: 5 years.

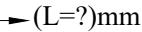
- * Deliver documents:
 - "Brochure";
 - "Test Report", issued by an "authorized body";
 - "Certificate of Conformity", issued by an "authorized body";
- *1 If necessary, "omit/add"
- *2 The standard determines the min. performance

Appearance: *1 = "the least good allowed" hydrant

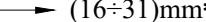
1. Inlet flange.
2. Isolation "pre-valve" (closing from below).
3. Obturator - "main valve" (closing from above).
- 3.1 The threaded part of the obturator.
4. Body

4.1 Place of breakage. Due to the impact of force F
5. Cap (keyless activation)

6. Blocking of unauthorized use


7. **Control valve (safety; sealing)** 8. Outlet couplings
9. Identification plate ("CE", " K_v ",)

10. **Drainage system:** (not defined by the standard)
type D1:

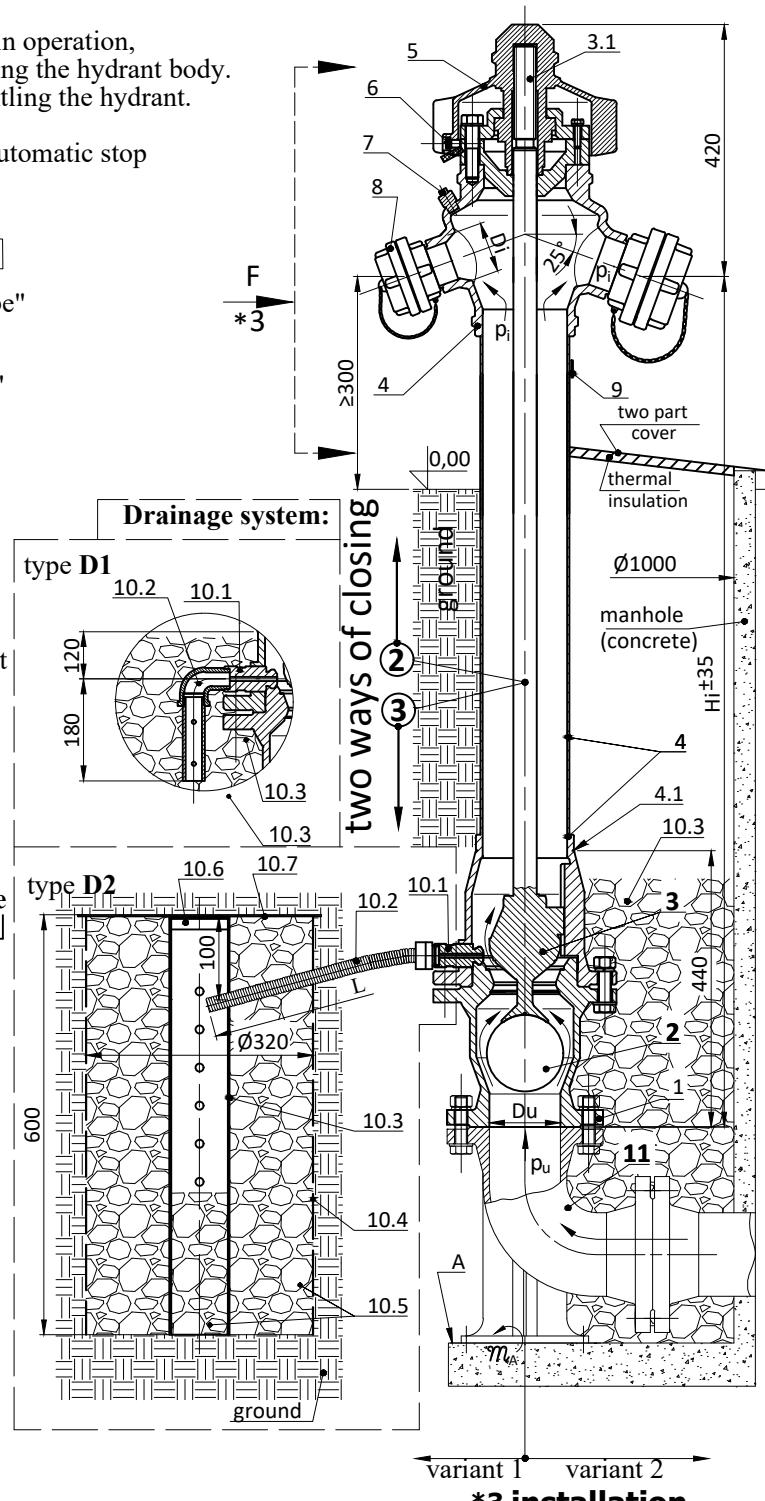

10.1 Drain valve 10.2 Drain pipe

10.3 Stone

type D2:

10.1 Drainage valve 10.2 Drain pipe

10.3 Distribution pipe 10.4 Wire basket*4


10.5 Stone

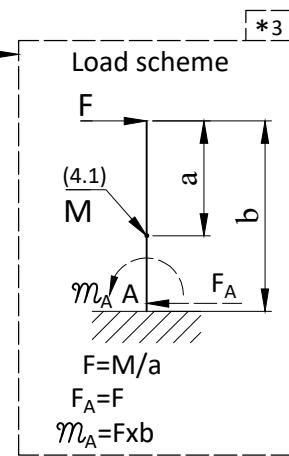
10.6 Cover 10.7 Plastic foil*4

11. Arch with foot EN545

*4 Provided by the buyer*4

Appearance

*3 installation

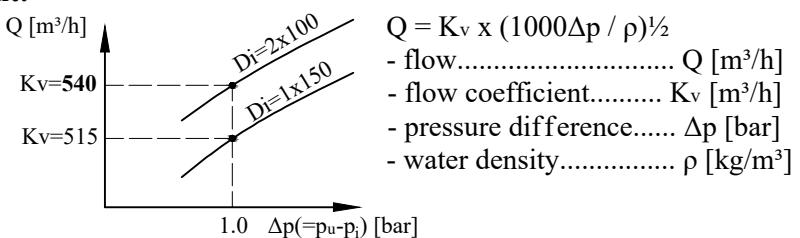

ABOVE-GROUND FIRE HYDRANT type NH3

<Two in one = hydrant + isolating pre-valve>

<Dual reliability = possibility of use (closing from below)
even when the regular closing (from above) is malfunctioning>
<high flow rate (Kv = 540 m³/h) = less fire damage>

Basic technical characteristics:

- * Safe = compliant with the requirements of the standard EN 14384 = CE
- * Purpose: Taking water from underground pipelines for fire fighting and communal needs
- * See "Procurement data" P1/2
- * Flow: Kv=540m³/h, for Di = 2x100
- * Moment of activation MOT: max.60Nm, (Class 1)
- * Moment of breakage (at place 4.1) due to force F M≈12500 Nm
- * Foundation
- * Weight ~ (92÷108) daN for Hi (1350÷1850) mm
- * Materials:
 - hydrant body castings nodular cast
 - cap, and output couplings aluminium
 - pipe of body, spindle, and obturator seat stainless steel
 - sealants polypropylene/elastomers



Advantages:

- * Two ways of use = dual reliability.
 - closing with the main valve (3), from above (regular work).
 - closing with a pre-valve (2), from below (extraordinary work).
- * Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
 - that the other hydrants remain in operation even when the main valve (3) malfunction,
 - automatic stop of water flow, in case of breakage (4.1) due to force F,
 - to omit a separate isolation valve in front of the hydrant,
 - lower cost of construction and maintenance of the hydrant network,
 - the use of a hydrant even in the case when the main valve (3) is malfunction.
- * Large flow: (Kv = 540 m³/h, for Di = 2 x 100); less fire damage.
- * Control valve (7) = great safety of the executor, prevention of hydrant freezing.
- * Prevented damage to the supply pipeline = breakage at point 4.1, due to force F.
- * Activation without additional tools, by turning the cap (5).
- * Easy activation: (class 1, MOT < 60 Nm) longer service life.
- * Possibility of blocking (6) unauthorized use.
- * High reliability of closing: impermeability even after 1000 closings.
- * Outlets tilted (25°) down, longer service life of fire hoses.
- * The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.
- * Very easy hydrant maintenance:
 - Replacing the main valve seal (3); without digging up the ground and without dismantling the body (4).
 - The threaded part of the closure (3.1) is outside the flow of water, permanently lubricated, maintenance-free throughout its working life.
 - Possibility (7) of checking the correctness of the drain and main valve.
 - Repair of the drainage valve (10.1); from the outside, partial excavation, without dismantling the hydrant.
- * Long warranty period (5 years).
- * Probably the best, and the most economical hydrant available.

Documents accompanying the delivery of hydrant:

- * Declaration of Performance,
- * Instruction for safety work (installation, handling, inspection, maintenance, warranty)

